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Abstract 

The theory of representations has been used to obtain 
probabilistic estimates of the two-phase variants and 
seminvariants for the non-centrosymmetric space 
groups up to orthorhombic. Some practical appli- 
cations show that the phase estimations can be useful in 
direct procedures, mostly for those crystal structures in 
which the enantiomorph definition is difficult. 

Notation 

h~,h 2 = reciprocal vectors 
N = number of atoms in the unit cell 
t = number of atoms in the asymmetric unit 
E h = normalized structure factor 
1 = identity 3 × 3 matrix 
e = E  2 -  1 
R h = magnitude of the normalized structure factor 
R v = pth rotation matrix of the point group 
T v = translation vector associated with the pth rotation 
matrix in the space group. 

1. Introduction 

Special quartets are those for which some algebraic 
relations can be found among the basis vectors in 
addition to the condition ~j  h 1 = 0. Examples of 
special quartets (Giacovazzo, 1980a) are given in 
(i)-(iv). 

(i) ~U_- ~/gh,- ~gh, R + (/gh 2 - -  ~/gh,(i R)+h2. 

This type of quartet is characterized by the property 
that two basis vectors are related by symmetry 
operations. From 

(PhR = ~ h - -  2 n h T  (1) 
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it follows that ~u_- ~0h:-- ch,~,-,)~ h2 + 2nh,T. So ~ i s  the 
sum of a constant arising from translational symmetry 
and a two-phase structure seminvariant of first rank. 
The role played by this type of quartet in the estimation 
of the two-phase structure seminvariants of first rank is 
well established (Giacovazzo, 1977b,c; Green & 
Hauptman, 1978; Giacovazzo, 1979; Giacovazzo, 
Spagna, Vickovi6 & Viterbo, 1979). 

(ii) 71 = ~h,(I R ) -  ~h, -k (ph 2 "J- (~h,R h 2" 

B e c a u s e  o f  (1), ~u = ~Oh,(l_R ) - -  (Ph,R + (Jgh 2 "k- ~h,R-h2 
-2nh~T. So ~u is the sum of a constant arising from 
translational symmetry, a one-phase structure semin- 
variant of first rank, and a triplet invariant. The 
estimation of ~ is therefore able to give an estimation 
for ~0h,(, R)provided the IEl's are sufficiently large. The 
role played by quartets (ii) in direct procedures for 
phase estimation has been described (Giacovazzo, 
1975; Giacovazzo, 1978; Burla, Nunzi, Polidori, 
Busetta & Giacovazzo, 1980). 

(iii) ~u= (~h, d- (~htR -t- ~Oh2-- ~0h,(l+R)+h2. 

Because of (1), ~u = 2~0h, + tph:- tph,t~÷R).h2 -- 2nh~T. 
Categories (i) and (iii) are quite different and play very 
different roles in direct procedures. Even if formulae for 
the estimation of quartets (iii) have been given 
(Giacovazzo, 1980a), no specific application has been 
tried so far. If h 2 is chosen so that h~(l + R) = -h2( l  + 
R) category (iii) reduces to 

(iv) ~ =  (~h, -+" ~Th,R -+" (~h2-t- ~0h2 R. (2) 

Because of (1), ~u= 2(~0h, + ~Ph) -- 2n (h~ + h2)T. So, if 
~u is estimated, some information about q~ = ~0h, + ~0h~ 
can be derived. Of course it does not make sense to 
calculate ~u in centrosymmetric space groups, where 7 ~ 
is always a constant. 

Formulae which give information about q~ in P2~, 
when q~ is a structure seminvariant of first rank, were 
given by Hauptman & Green (1978). No practical 
© 1980 International Union of Crystallography 
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application of those formulae has been tried so far. In 
this paper we shall discuss the role of the quartets (iv) 
in direct procedures for phase estimation (8 2) and 
describe probabilistic formulae which give information 
about q~ in all the non-centrosymmetric space groups 
up to orthorhombic (88 4 and 5). Formulae hold when 
q> is a structure seminvariant, and when it is not (then it 
is a two-phase variant). To do that we shall make full 
use of the space-group symmetry (§ 3) as suggested by 
representation theory (Giacovazzo, 1977a). In 
particular we shall estimate q> via the first represent- 
ation of 7". According to the symmetry class, 7" can 
depend on more than three cross magnitudes 
(Giacovazzo, 1976; Busetta, Giacovazzo, Burla, 
Nunzi, Polidori & Viterbo, 1980). To involve all the 
available cross magnitudes some algebraic consider- 
ations are useful, which are described in 8 3. Practical 
applications are presented in 8 6. 

2. The role of the W quartets in direct procedures 

In § 1 we showed that 7" = 2q~ - 2n(ht + h2)T. Since 
(h~ + h2)R = - ( h ~  + h2), Eh,+h, is a reflection with 
restricted phase values: in particular, (oh,+,, = n[n + (h l 
+ h2)T] where n is an integer. Therefore if (o,.+h: 
assumes only values 0 or n, then 7" = 2q~. For example, 
in P2~, 

7"= (ot25 + (o125 + (0627 + (O627 = 2((O125 + (O62"~). 

In this case if 7" is estimated to be 0, the minimal useful 
information is obtained for q~: in fact q~ ~_ 0, n. If 7" is 
estimated to be n, then q~ ~_ +_n/2 which is an 
enantiomorph-sensitive relation. 

If ~Oht+h 2 a s s u m e s  only values +n/2, then 71 = 2q~ + 
n. For example, in P2~2~2~, 

I / / =  (O125 q- (O125 q- (O624 -k- (O624 = 2((o125 + (/9624) ----- n.  

In this case if 7' is estimated to be 0 then q~ ~ _+n/2; if 
7" is estimated to be n then q~ ~_ 0, n. 

The less useful situation occurs when 17"1 is 
estimated to be I¢~1, with ~t ~ 0, +n /2 ;  then four values 
ensue for q~: +~t/2, +~/2  + n. 

What is the role of the quartets 7" in direct 
procedures? Without loss of generality we discuss the 
question in space groups up to orthorhombic following 
some recent ideas (Giacovazzo, 1980b). Let 

Rh,,Rh.,Rh,(l+ R),Rh,.h?Rh,R +h2 
be the five magnitudes contained in the first phasing 
shell of 7". Four triplet relations ensue from them: 

Ch, 4- (oh2 '~' (ohs+h2, (3) 

(Oh, + (Oh, ~-- (oh,R+h, + 2nhlT, (4) 

2(oh, ~-- (oh,~i+R) + 2nhiT, (5) 

2(oh2 ~-- --(Oh,(I+R) + 2nh2T. (6) 

Let E t be the minimum value of IEI chosen for carrying 
out phase determination by means of triplets and, for 
simplicity, let 

(oh,+h 2 ~ (oh,R+h2 = 0 ,  ~, 

2n(h, + h2)T = 2nhlT = 27rh2T = 0. 

If all the R's in the first phasing shell of 7 / are large, 
then q~ is estimated to be 0 or 7r, in agreement with 
triplets (3) and (4) and with the relation sum between (5) 
and (6). The correlation between information provided 
by Y / and that provided by triplets is very high. 

If Rh,(l+R), Rh,+h2, R h,R+h2 are all smaller than E t, then 
none of the four triplets (3)-(6) is estimated in the 
direct procedure. The information provided by 7" is 
now quite new. 

If R h , + h  2 > E t and moderately large, and Rh,,÷R), 
R h,R+h, are moderately small, then <b can be estimated 
near _+n/2, at variance with the information provided 
by (3). 

In conclusion, the estimation of the quartets 7" can 
be a useful tool for checking the validity of special 
triplets such as (3)-(6) or for introducing new phase 
information not provided by the triplets. On the other 
hand, quartets are relations of order 1/N whereas 
triplets are of order 1/v/N. That suggests that the 
reliability of the quartet information rapidly falls when 
N increases. A way of opposing this effect is to make 
full use of the crystal symmetry. To do that we shall 
describe in 8 3 the circumstances in which more than 
five magnitudes are in the first phasing shell of 7". 

3. Algebraic considerations 

It is possible to search in different ways for quartets 
such as (2). Trivially, the subset (2) can be picked out 
from the overall set of quartets obtainable by a general 
quartet routine. We preferred to search for (2) by the 
following ad hoc procedure. 

The condition (I + R)(h I + h2) = 0 holds for (2). 
When hi and R are chosen, then h 2 is determined by 
means of 

D h  2 = H (7) 

where D -- (I + R) and H -- - -Dh 1. However, (I + R) 
may be a singular matrix; therefore h 2 may not be 
uniquely determined by (7). The more general way of 
dealing with this problem is to introduce the concept of 
the reflexive generalized inverse of a matrix. Then (see 
Giacovazzo, 1980c for the background and appli- 
cations to structure seminvariants) 

h E -- D*H + ( I -  D*D)Z, (8) 

where D* is the reflexive generalized inverse of D and Z 
is a free vector in reciprocal space. When considering 
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only the space groups up to orthorhombic the 
calculations on the right-hand side of (4) are rather 
simple. In fact any D = [d o] is a matrix for which d o = 
0 for i :/:j. Then D* = [d~] is a matrix for which d* = 0 lj 
for i :/:j, d~ -- 0 if d, = 0, otherwise d~ = 1/d,. As an 
example, consider the case 

Then, 

and 

1 

h i =  2 

3 

H=l! 
h 2 = 

R = 

O • = 

h 

+ 0 

1 

0 0 

0 1 0 

0 0 i 

0 0 0 

0 0 . 5 0  

0 0 0 

h 

: 2 , 

l 

where h and 1 are free indices. On assuming that the 
maximum values of the indices h and ! are known, we 
are immediately able to define all the h 2 vectors which 
form the quartets (2) with h~. The application of these 
considerations to point groups 2, m and 222 is 
immediate. A situation particularly favorable occurs in 
mm2. Let us denote 

R~ : I, R 2 : 

i 0 

R 4 :  0 i 

0 0 

f 0 

0 1 

0 0 

il' 
iL 1 3  = 

1 0 

0 i 

0 0 

0 

0 ,  

1 

Then the search for all the v e c t o r s  h 2 which form 
quartets such as (2) with a chosen h~ may be made 
merely by means of the rotation matrix R 4. In fact if (8) 
is applied to h~ = 123, then: 

(a) h 2 = h k 3  f o r R = R  4, 
(b )  h 2 ~ h23 for R = R 2, 
(c) h2 --= ik3 for R --- R3 ,  

where h and k are free indices in reciprocal space. As 
we see, the vectors h 2 in (b) and (c) constitute subsets of 
that obtained via R = R 4. 

It should be useful to note that less than five 
magnitudes may be contained in the first phasing shell 
of @. As an example, in P21, 

: (}0040 + (if040 + (~348 "t- ~ , 8  

depends only on two cross magnitudes, RoE 0 and R3o 8. 
In the symmetry class 2 this situation occurs only when 
h~ or h z is a 0k0 reflection. Owing to similar 
considerations, in the symmetry class m, tp depends on 
two cross magnitudes when h 1 or h 2 is a hOl reflection. 

Analogous situations may be found in the symmetry 
classes 222 and ram2. 

We come now to the problem of identifying quartets 
which depend on more than three cross magnitudes. 
They are characterized by the following property 
(Giacovazzo, 1976): at least one of the cross vectors 
satisfies, for a given rotation matrix R, the condition 

h ( I - - R ) = 0 ,  R=/=I. (9) 

For example, 

~ [ / :  (Ph, -1- (ph z + (~h~-  (/gh,+h2+h ~ 

depends on the three cross magnitudes Rh,÷h~, Rh,+h,, 
Rh,+h • I f ( h  I + h2)R = 0, then 

I//r : (PhtR + (PhzR + (Ph - -  (Pht+h2+h 3 

= ~u,_ 2zr(hl + h 2 ) T  

is a quartet too, with cross magnitudes Rh, ~ h:, Rh,R+h3, 
Rh2R+ h . If no other special condition occurs, then 
depends on five cross magnitudes. 

Let us apply these considerations to 

t / . /=  (Phi + (PhtRp + (Ph 2 + (Ph2R , ,  (10) 

which depends on 

R h,(l+ R~), Rh ,  ~-h 2, R h,ap+ h~" 

Since h~ (i + R,) satisfies (9) for R : Rp, the quartet 

: (Ph,Rp "+- (Ph, + (]gh~ -+- (Ph2R p 

can be constructed. In this case, however, ~u, coincides 
with ~. It may be concluded that in symmetry classes 2 
and m all the quartets such as (10) depend on three 
cross magnitudes at the most. A different situation 
occurs in class 222, where the reflections Eh,+h 2 and (or) 
Eh,r,~ h, can satisfy (9) by a rotation matrix Rq #: Rp. As 
an example, suppose that h = h~ Rp + h E satisfies (9.) for 
R = Rq ~ Rp. Then 

t / r  = (LTh ' + (ph,rprq + (LTh2r ~ + (~2Rp 

may be constructed, whose cross vectors a r e  hl ( l  + 
RpRq) = hl(l  + Rt) where R i : RpRq, h i + h2Rq, 
h lR p + h 2. 

In a similar way, if h = h~ + h 2 satisfies (9) by R = 
Rq :/: Rp, then 

: t Ph, + ¢Th,rpRq + qh2 + (Dh2rpr~ 

may be constructed whose cross vectors a r e  hi(! + 
RpRq) = hl( l  + R i )  where R i = RpRq, h I + h 2 and 
h l R  i + h 2. 

In conclusion, in both cases ~u depends on the five 
cross magnitudes 

Rh.(i.r,),Rh,+h~,Rh~r,+h2, Rh,(l+R,),Rh.Rj+h2, (11) 

where: (a) R i = RpRq; (b) Rj : Rq if hlR p + h 2 satisfies 
(9) for R = Rq and Rj = Ri if h I + h 2 satisfies (9) for 
R =  Rq. 
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To give a numerical 

1 

R 2 =  0 

0 

i 

R4= 0 

0 

example denote 

o 

0 , R 3 =  0 

J 0 

0 

0 

1 

0 

0 ,  

i 

Then, by means of Rp --- R a the quartet 

I/./~_ (0123 4- tffi2~ 4- 0125 "4- 0i25 

= 2(~p123 + ~125) (12) 

is constructed, with cross vectors (040), (208), (002). 
Since hlR p + h 2 = (002) satisfies (9) for Rq = R 4, then 

~ '  = q9123 + q~123 4- ~J25 4- 0i25,  

which depends, in accordance with (11), on R2o o, Ro48, 
Roo 2. A last observation is that in the point group 222, 
besides 7/l = 2(~0h, + Oh) -- 2rr(h~ + h2)Tp, 712 = 2(0h.-- 
~2) -- 2re(hi -- h2)Tp may also be calculated. For 
example, besides (12), 

0123 4- 0i23 4- 0125 4- 0125 = 2(0123 4- 0125) 

also exists, which depends on R040, R202, R0o 8, R200, 
Ro4z. A consequence is that in the symmetry class 222 
information about both ~ ,  + q~, and q~, - ~ ,  may be 
achieved. 

A more favorable symmetry class is m m 2  because 
quartets such as (10) depend always on at least five 
cross magnitudes. As an example choose hi = (123) 
and R o = R 4 (see notation at the beginning of this 
paragraph). We obtain 

~ ¢ =  0123 4- 0123 4- Ohk3 4- (~a[¢3 

whose cross vectors are (006), (1 + h, 2 + k, 0), (i  + h, 
+ k, 0). Since (006) satisfies (9) for R = R 2 and R = 

R 3, the following quartets arise 

~04 = 0i23 4- OI23 4- Ohk3 "4- Ohk3, 

~Etti = ~0123 4- ~0123 4- (Ohk ~ + ~Oh[~3 ' 

whose cross vectors are (006), (1 + h, 2 + k, 0), (1 + h, 
+ k, 0). In conclusion any quartet such as (9) with 

Rp = R 4 depends on the five cross magnitudes 

R h , t l + R , ) , R h , + h ? R h , R , + h ? R h , R 2 + h ? R h , R , + h  2. (13) 

However, when h = 1 or k = 2 the cross reflection 
Ei+h,2+k.O satisfies (9) by means of R = R~ or R = R~. 
Then the supplementary quartets 

¥/tll = 01Z3 4- ~0123 4- 0ik3 4- 0J/~3 

o r  

~/iv = 0123 4- 0123 4- 0h23 4- 0h;~3 

arise which introduce the supplementary cross 
magnitude R206 or R046 respectively. The results can be 
summarized: in ram2 any quartet such as (10) depends 
on the five cross reflections (13) when Rv = R 4. When 
Rv = R 2 or Rv = R 3 the additional cross magnitude 
Rh,(~+ao)is to be added to (13). 

4. Probabilisfic formulae (in the exponential Bessel 
function form) estimating • 

In accordance with § 3 we have calculated the joint 
probability distributions P(R  1, R2, • • . ,  Rn,  OI, ~o2 . . . .  , 
0n) proper for each symmetry class. The method 
requires the calculation of the characteristic function of 
the distribution: 

C(Pl, , p,, qs~, , ~,,) = exp S,./t v/z 
Iv=2 

where & and ~s are carrying variables associated with 
Rj and Oj, and the S,  are functions which depend on the 
standardized cumulants of the distribution. 

We shall use two different methods to derive the 
probability densities. The first obtains them by 
calculating the Fourier transform of the G r a m -  
Charlier expansion of the characteristic function (Klug, 
1958): conclusive formulae are described in § 5. The 
second method directly derives the probability densities 
by calculating the Fourier transform of the 
characteristic function: the corresponding formulae are 
here described. The reader will find exhaustive inform- 
ation about both methods in earlier papers 
(Giacovazzo, 1977b,e). 

In both methods the standardized cumulants of low 
order have to be calculated. The value of any cumulant  
depends on the actual space group, on the statistical 
weights of the reflections involved in the cumulant and 
on the mutual correlation among the indices of those 
reflections (Giacovazzo, 1974a,b). The exact esti- 
mation of the cumulants may be too time consuming. 
On the other hand, our previous experience suggests 
that the effects of the statistical weights of the 
reflections and the mutual correlation among their 
indices can be neglected without compromising the 
estimation of q~ too much. We have followed this 
strategy in our mathematical approach. 

In the symmetry classes 2 and m fix the five numbers 
R i , i =  1 . . . .  , 5 s u c h t h a t  

R l = Rh, ,  R2 = Rhz; R3 = Rh,~l+Rp); 

R 4 = Rh,+h2; R5 = Rh,g ,+h 2. 

Rp represents the non-identity rotation matrix. Then the 
conditional probability distribution P(OIR i, i = 1 . . . .  , 
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5) is given by 

1 RIR 2 
P ( ~ l . . . ) - ~ L e x p  4 N  

x [ w , , 2 -  2 w ~ -  w 2 -  w~] cos 2q~] 
/ 

× I  o ( x ) c o s h  w 4 ~ c o s q b  

( R'R2R' N x c o s h  w 5 ~ c o s ~  , 

where 
w3R 3 X : - - - ~ { R  4 + R 4 + 2R~R~ cos 2q~} '/2 

I o is the modified Bessel function of  order  zero and L is 
a normal izat ion factor  obtained by numerical  tech- 
niques. The weight wj is assumed to be 1 unless the 
corresponding Rj is not in the measurements .  W l .  2 is 
assumed a lways  to be unity. H a u p t m a n  & Green 
(1978) suggested a similar formula  with different 
weights, which holds when ~ is a s tructure semin- 
variant  and when all three cross vectors are in the 
measurements .  

In the symmet ry  class 222 fix the seven numbers  Ri, 
i = 1 . . . .  , 7  such that  

R 1 = Rh,; RE = Rh2; R3 = Rh,0+R,); 

R 4 : Rh,+h, .  R5  = Rh,R.+h2. 

R 6 --= Rht(l+R~); R7 : R ht+h2Rj; 

where Rt,, R t, Rj have the meaning defined in § 3. Then 
the conditional probabil i ty distribution P( q~lR~, i = 1, 
• . . ,  7) is given by 

1 f 2 2 RIR2 
P(q~ l . . . )  ~_ -L- exp / - - ~  [ w"2 c°s  S t , -  2w 2 cos St, 

- w] cos (2a4) - wg cos (2a 5) - 2w~ cos S~ 

- w~ cos (2a7) ] cos 2 q~ } 
/ 

× I0(X3) cosh w 4 ~ cos ( ~  + a4) 

[ RIR2R5 ] 
x c o s h  w 5 V @  c o s ( ~ + a 5 )  

[ RtR2R7 ] 
xlo(X6) cosh w, V @  c o s ( q ~ + a 7 )  , 

where 

w3R3 
_ 2 2 (2q~  S t , ) ] / / 2  X 3 - - - " ~  [R 4 + R~ + 2R,R 2 cos -- , 

w6R 6 
X6=----ET,, [R~ + R~ + 2R~R 2 cos ( 2 ~ -  Sr)]  rE, 

Vlv 

Sp = 27r(h I + h2)Tp, 

S, = 2rc(h I + h2)(T p + Tq). 

E4, Es,  E 7 are cent rosymmetr ic  reflections and a4, as,  
a 7 symbolize any one of  the two permitted phase values 
of  (P4, (Ps, (P7 respectively• w 1.2 is assumed (Giacovazzo ,  
1976, Appendix A) to be 1 if cos Sp = cos S r, otherwise 
wL2 = 0. The condition wl,2 = 0 occurs  when one 
of  the cross reflections corresponds  to a space-group 
extinction• 

The weight w i is assumed to be 1 i f R  i is in the 
measurements  otherwise w i = 0. 

In the symmet ry  class ram2 fix the eight numbers  
Ri --- 1 . . . . .  8 such that  

R l : Rh , ,  R2  = Rh2, R3  : Rh,0+R,);  

R 4 = Rh,+h2 , R5 = Rh,R.+h ? R6  = Rh,( l+aq).  

R 7 = RhjR2+ h2; R8 : Rh,R~+h2; 

where (see § 3) Rq = R 2 or Rq = R 3 according to 
whether  quartets  W can be found by means  of the " 
rotat ion ma t r i ces  R 2 or R 3. Then the conditional 
probabili ty distribution P ( ~ l R i ,  i - 1 , • • . ,  8) is given 
by 

1 RIR 2 
P(C,J...) ~_-~-- exp - - ~ - [  w¿,2 cos S o -  2w~ cos St, 

\ 

- w l -  w,~- 2w~ cos s ~ -  w~- w~l cos 2¢,/ 
! 

( t × /0(X3) cosh w 4 ~ cos q~ 

x cosh w 5 - - - 7 -  cos 

× ]0(X6) cosh w 7 ~ cos q:' 

( R'R2R8 ) 
x c o s h  w 8 - 7 - c o s q ~  , 

where p = 4 and 

w3R3 X 3 -  - ~  [R~ + R 4 + 2R~R22cos(2CP-Sp)] '/2, 

w6R6 
X6 = - - ~ -  [R ~ + R~ + 2R~R~cos(2q~--So)] ''2, 

St, = 2zr(h I + h2)T 4, 

S o = 2ze(h I + h2)T 0. 

W l, 2 is assumed to be 1 if cos St, = cos S o, otherwise 
wE2 = 0. If  the first phasing shell of  ~ contains R 6 and 
R 6 is in the measurements ,  then w 6 = l; otherwise w 6 = 
0. The weight w~, i :/: 6 is assumed to be 1 unless R~ is 
not in the measurements .  
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We note now that in the symmetry classes 2, m and 
ram2 the permitted phase values for the centro- 
symmetric reflections are always 0 or 7r. That suggests 
the following general formula: 

1 {22 RIR2 
P ( O I . . . ) ~ _ T e x p  - - ~ [ w t , : c o s S  o-2w ]cosS o 

--  W ] COS ( 2 a  4) --w~ COS ( 2 a  s) - -  2w62 c o s  S r 

- w~cos (2a7) - w2s cos (2a8) ] cos 20}  
J 

X I 0 ( X 3 )  c o s h  W 4 ~  COS (1~ + a 4) 

[ R'R2RS ] 
xcosh w 5 ~ c o s ( O + a  s ) 

[ RIRER7 ] 
X I0(X6) cosh w 7 ~ cos (O + a7) 

[ R'R2Rs ] 
xcosh w s ~ c o s ( O + a  8) . (14) 

, w  

Equation (14) holds in all the non-centrosymmetric 
space groups up to orthorhombic provided: (a) the w~ 
corresponding to the reflections which are not in the 
phasing shell of • are assumed to be zero; (b) the 
meaning of Sp, S ,  w~,.. ,  assumes the meaning above 
defined for each symmetry class. 

The mode of the distribution P(OI. . . ) ,  the expected 
value of • and its reliability may be calculated by 
numerical techniques. A measure of reliability is the 
variance, calculated by 

n/2 

f P (OI . . . ) (O- -  (O)2) dO. 

o 
The limits (0, 7~/2) of the integral are due to the 
unsolvable ambiguity among + O, 7~ + O. 

5. Exponential probabilistic formulae estimating • 

If the Gram-Charlier expansion of the characteristic 
function is used, we obtain for • the following 
conditional probability distribution 

1 
P ( O I . . . ) _  - -  exp [G cos 2 0 ] ,  (15) 

2rd0(G) 

where G = A/(1 + B). The expressions for A and B for 
the various point groups are defined below. 

(a) In point groups 2 and m: 
2 2 RIR2 

A - (WI. 2 + 2W 2 e 3 + W] e4 + W 2 eS), 
4N 

B ~_/wl el e~ e, + w~ el e~ e~ 

"+" t W2 [ L 4 ( E I )  + L4(E2)I}/2N, 

where 

L 4 ( E  ) = E 4 - 4 E  2 + 2. 

(b) In 222: 

R2R22 2 w  2 e 3 COS Sp + w 2 e 4 c o s  2 a  4 A - [ wl,2 cos Sp + 
4N 

+ w~ e~ cos 2a5 + 2w6 2 e6 cos Sr + w~ e, cos 2 a d ,  

B = {w24 e I e2 e, + w~ el e2 e5 + ¼ w~ e3[L4(E 1) 

+ t4(Ez)l + I w~ e6lt4(El) + La(E2)I 

+ w~ e, e2 c7}/2N. 
If El or E 2 are centrosymmetric reflections, L4(x) may 
be replaced by the Hermite polynomial of order four 
H 4 ( X  ) = X 4 -  6X 2 + 3. 

(C) In mm2: 
2 2 

RIR2 2w~ e 3 A - { w , . 2  c o s  S o + c o s  S o + w 2, E, + w~ es 
4N 

+ 2wZ6 e6cos Sq + wE e7 + WS 2 es}, 

B =  { w  2 e  l e  2 e  4 + w~ 81 e 2t; 3 + t w ] e 3 I t 4 ( E  1) 

+ L,(E~)I + k w~ e6IL,(E,)  + L,(E2)] 

+ wE el e2 e7 + W~ e t e z esI/2N. 
In (a), (b), (c) the symbols have the meaning defined in 
§ 4 for the various point groups. The same con- 
siderations which led us to suggest the general formula 
(14) suggest now the following general expressions for 
A and B: 

2 2 RxR2 
A - [ wl. 2 cos S o + 2w~ e3 cos S o + w] e4 cos 2a4 

4N 

+w~e 5cos2a 5+2w~e 6cosSr  

+ w~ e7 cos 2a v + w~ e8 cos 2a 8 ], 

O = {w 2 e 1 e 2 e 4 -t- w 2 e I e 2 e 5 -t- t w2 e 3 [ t 4 ( E l )  

+ L4(E2)] + k w~ e6[L,(E ,) + L4(E2)I 

+ w~ e, e~ e~ + w~ el e~ e,}/2N. 

Equation (15) is a bimodal Von Mises type angular 
distribution. The modes are in 0 or zt if G is positive, in 
+ rt/2 if G is negative. 

6. Practical applications 

A computer program has been implemented which 
estimates the various O's in all the non-centrosym- 
metric space groups up to orthorhombic (except P1) 
via their complete first phasing shell. The method was 
tested on five known structures covering the symmetry 
classes 2, 222, mm2. Table 1 shows the references and 
the most relevant features of the test structures whose 
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results are discussed in this paper. For each structure 
we used the first 100 reflections, arranged in decreas- 
ing order of I EI ,  to form the two-phase variants and 
seminvariants. Therefore, in Table 1, Eml n is the I EI 
value corresponding to the 100th reflection. 

The use of the exponential Bessel formulae (§ 4) 
requires more computing time than the pure 
exponential functions (§ 5); however they proved 
slightly more accurate when enantiomorph-sensitive 
variants or seminvariants were estimated. Therefore, in 
this section we only refer to the application of the 
exponential Bessel functions. 

For H E P T A  (N = 120, P2~) we have calculated 279 
variants or seminvariants. The 15 of them which are 
estimated as enantiomorph sensitive (i.e. with ~m -> 
30 ° ) with the smallest variance are shown in Table 2. 
Their e.s.d.'s lie in the range 25-26 °. 

Table 1. Abbreviations, references, space groups, 
formulae and minimum values of lEI for the reflections 
forming the two-phase variants and seminvariants, for 

the five test structures 

Space 
Reference group Formula Z E,~i. 

HEPTA Beurskens. Beurskens P2 t C~0H ~, 4 2-02 
& van den Hark (1976) 

RIBO James & Stevens (1977) P2~ C~3['l~aO o 4 2.05 
TOXE Cerrini. Fedeli. Gavuzzo P 2 ~ 2 ~ 2 ~  C2~H,O ., 4 1.98 

& Mazza (1975) 
K A RI.t-'. Karle. Karle & P2~2~2~ C~:[I~NO4 4 1.50 

Estlin (1967) 
AZET Colens. Declercq. Pca2~ C:~H~6CINO 8 1.80 

Germain. Putzeys & 
van Meerssche (1974) 

Table 2. HEPTA: indices, 1El's, true values of  q~(@t) 
reduced to the first quadrant of  the trigonometric circle 
and corresponding mode values ( @m) for the two-phase 
variants and seminvariants which are estimated 

enantiomorph sensitive 

The mode is calculated according to the exponential Bessel 
functions. The ~'s are arranged in decreasing reliability. 

hi Eh~ h2 Eh2 @t(°) ~m (o) 

040 3.64 12,4,1 2.41 78 40 
040 3.64 646 2.15 89 50 
040 3.64 141 2.07 70 30 
337 2.91 836 2.74 12 90 

10,3,2 2.18 632 2.16 58 90 
231 2-23 536 2.13 56 90 
836 2.74 73i 2.24 18 90 
337 2.91 73i 2.24 30 90 
296 2.76 691 2.16 6 90 
836 2.74 536 2.13 81 90 
330 2.24 536 2.13 83 90 
636 2.23 632 2-16 87 90 

11,3,1 2.66 73i 2.24 79 90 
73i 2.24 536 2.13 81 90 

3,11,i 2.24 3,11,1 2.06 27 90 

For RIBO (N = 88, P21) 261 variants or semin- 
variants were calculated. The 15 of them which are 
estimated enantiomorph sensitive with the smallest 
variance are in Table 3. Their e.s.d.'s are in the range 
26-27  ° . 

For A Z E T  (N = 192, Pea21) we have calculated 403 
variants or seminvariants. The 15 of them which are 
estimated enantiomorph sensitive with the smallest 
variance are shown in Table 4. The corresponding 
e.s.d.'s are in the range 26-27 ° 

The number of two-phase variants and semin- 
variants estimated near 0 or 7r is much higher than the 
number of enantiomorph-sensitive pairs. In addition 
their variance can be smaller, so that their estimation 
may be more accurate. In H E P T A  20 pairs of phases 
estimated 0 or rc have calculated e.s.d.'s between 14 and 
20°:  their experimental average error (as a difference 
between ~o  and ~0) is 12 ° . In RIBO, 20 pairs 
estimated 0 or rc have a calculated e.s.d, between 23 
and 25 o with an experimental average error of 30 °. In 
A Z E T  20 pairs of phases are estimated 0 or rc with a 
calculated e.s.d, between 24 and 25 °, and an experi- 
mental average error of 20 ° . 

In the structures which crystallize in the space group 
P21212 ~ the definition of the enantiomorph usually is 
not a difficult problem because numerous phases can 
assume values near +z r/2 merely by application of 
triplet relations. Therefore the quality of the inform- 
ation provided by the two-phase variants or semin- 
variants should be considered in the general terms 
described in § 2 rather than only with respect to the 
enantiomorph definition. We estimated for K A R L E  
and T O X E  2336 and 1262 variants or seminvariants 
respectively. The efficiency of our probabilistic 
approach may be checked by comparing the true 
values of the 40 pairs of phases estimated with the 
smallest variance with the corresponding mode values. 
We have found for K A R L E  an average error of 17 ° 
and for T O X E  an average error of 27 ° . We also 
applied the Hauptman & Green 11978; equation (5.1)1 
formula valid in P21 to H E P T A  and RIBO. This 
formula does not give better results than those 
presented in this paper, and often overestimates the 
reliabilities of the phase relations. So one should be 
careful when applying this formula. 

Execution time for our program is about 30 s per 
crystal structure such as H E P T A ,  RIBO and A Z E T  on 
a Univac 1110 computer, about 1.20 min for T O X E  
and K A R L E ,  which is reasonably fast considering the 
nature of the problem. 

7. Conclusions 

The representations theory enabled us to estimate 
two-phase variants and seminvariants ~ via the first 
phasing shells of very special quartets estimating 2~ .  
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Table 3. RIBO: indices, lEt's true values o f  fI)((~)t) 
reduced to the first quadrant of  the trigonometric circle 
and corresponding mode values ( ~m) for  the two-phase 
variants and seminvariants which are estimated 

enantiomorph sensitive 

The mode is calculated according to the exponential Bessel 
functions. The q~'s are arranged in decreasing reliability. 

hi Eh ' h2 Eh 2 Ot (o) Om (o) 

48:5 2.58 98i 2"45 57 90 
98 i 2.45 782 2.27 79 90 

16,2,3 2.85 11,2,6 2.10 61 90 
12,7,0 3-06 176 2.39 85 50 
16,2,3 2"85 5,2, 1"-'0 2.07 36 90 

246 3.22 14,4,2 2.05 23 40 
246 3.22 16,4,:2 2.18 60 90 
18(5 2.70 78:2 2.27 74 90 

12,3,0 2.13 131~ 2.06 41 90 
1,2,1-'0 2.19 20,2,'7 2.13 69 90 
10,3,i 2.11 735 2.11 76 90 

483 2.58 5,8,1-"6 2.08 76 90 
8,3,10 2.23 638 2.09 15 90 

735 2.11 23,3,3 2-08 26 90 
10,3,'7 2.11 23,3,3 2.08 78 90 

Table 4. AZET:  indices, IEl's, true values of  (I)((1)t) 
reduced to the first quadrant o f  the trigonometric circle 
and corresponding mode values ( 'l~m) for  the two-phase 
variants or seminvariants which are estimated 

enantiomorph sensitive 

The mode is calculated according to the exponential Bessel 
functions. The ~'s are arranged in decreasing reliability. 

h, Eh~ h 2 Eh 2 Ot (o) q5 m (o) 

254 2.83 14,5,4 2.75 36 90 
14,5,4 2.75 534 2.07 20 90 
15,3,1 2.55 13,3,1 2.09 75 90 

134 2.14 534 2.07 74 90 
422 2.17 452 1.95 84 90 
254 2.83 364 1.86 54 90 

14,5,4 2.75 364 1.86 90 90 
254 2.83 134 2.14 90 90 

14,5,4 2.75 934 2.33 60 90 
15,3,1 2.55 18,2,1 1.82 36 90 
11,3,2 2.30 622 1.83 60 90 
13,3,1 2.09 711 1.86 90 90 
31,3,1 2.14 13,3,1 2.09 62 90 

422 2.17 15,3,2 1.88 68 90 
422 2.17 27,1,2 1.99 76 90 

The probabilistic formulae described in this paper seem 
able to give useful enantiomorph-sensitive and -in- 
sensitive information which may be useful in the 
phase-determination processes. It may be guessed that, 
owing to the very special nature of the quartets 
belonging to the first representation of 2 0 ,  the 
estimation of • is rather sensitive to the structural 

regularities. Thus for a sufficiently large number of  
quartets with the same value of the variance a reliable 
measure of the e.s.d, is obtained. But in the group we 
have a great number of well estimated and a number 
of badly estimated phases in such a way that the 
averaged experimental e.s.d, is almost equal to the 
theoretical deviation. The situation is very similar to 
that described by Busetta et al. (1980) for negative 
quartets. 

What  are the prospects of these phase relations in 
direct procedures? Giacovazzo (1980c) showed that 
when q~ is a structure seminvariant, the information 
contained in the first phasing shell of ~ may be 
associated with that provided by the quartets estimat- 
ing 20 .  In particular the concept of a generalized first 
representation was introduced which is the collection 
(in the non-centrosymmetric space groups) of the 
quartets estimating ¢, and 2~.  We shall show in a later 
paper how a two-phase seminvariant ~ may be 
estimated via its generalized first representation. Our 
first results suggest that a two-phase seminvariant can 
be estimated with higher accuracy via its generalized 
first representation than via the mere first represent- 
ation (Giacovazzo, Spagna, Vickovi6 & Viterbo, 1979). 
That should allow their active use after the first stages 
of the phase determination process. 

As regards the two-phase variants, the accuracy of 
the present estimates are not so high as for the 
two-phase seminvariants: therefore their active use in 
direct procedures must be considered carefully, 
whereas they may be successfully used as a figure of 
merit. However, the estimates of  the two-phase variants 
can be remarkably improved when joint probability 
distributions containing supplementary a priori inform- 
ation are used. We are now devoting our efforts to 
developing this new probabilistic procedure: our first 
tests in P2~ are very encouraging. 
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Measurement of X-ray Pendelliisung Intensity Beats in Diffracted White Radiation from 
Silicon Wafers 
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Abstract 

Pendell6sung intensity beats of white radiation diffrac- 
ted from parallel-sided single-crystal wafers of silicon 
were measured by a solid-state detector. After a few 
corrections, the extremum positions in the beat were 
measured to evaluate the atomic scattering factors for 
various reflections. The scattering factor shows a 
dependence on wavelength, 2, which can be interpreted 
by the anomalous dispersion term, f ' ,  as calculated by 
Cromer [Acta C~st. (1965), 18, 17-231. The obtained 
values of the atomic scattering factor expressed as 
linear functions of wavelength are listed with those at 
2 = 0.5594/k for comparison with the data so far 
obtained with Ag KCt~ and wedge crystals. The values 
for I l l  and 220 reflections in the present experiment, 
10.59 and 8.40, were almost the same as Tanemura & 
Kato's IActa Cryst. (1972), A28, 69-801, 10.664 and 
8.463 , respectively. 

1. Introduction 

A striking example of the dynamical diffraction effect 
of X-rays is the Pendell6sung fringe appearing in the 
topographic image of perfect wedge crystals. Kato & 
Lang (1959) first observed the fringes for silicon and 
quartz using characteristic radiation. The fringes are 
produced by the interaction between two wave fields 
with slightly different wave vectors in the crystal, and 
the fringe spacing can be expressed as a function of the 
structure factor of the crystal. Many workers have 
measured the fringe spacing in topographs for the 
purpose of obtaining the structure factors of silicon 

0567-7394/80/061025-06501.00 

(Hattori, Kuriyama, Katagawa & Kato, 1965; Hart, 
1966; Hart & Milne, 1969; Tanemura & Kato, 1972), 
germanium (Batterman & Patel, 1968; Persson, 
Zielifiska-Rohozifiska & Gerward, 1970) and others 
(Yamamoto, Homma & Kato, 1968: Yasuda, Hondoh 
& Higashi, 1979). This method requires accurate 
collimation of characteristic X-rays and precise shaping 
of the wedge specimen. 

The Pendell6sung fringes have also been observed in 
the topographic images of white radiation (Hashimoto, 
1965; Kozaki, Ohkawa & Hashimoto, 1968; Aristov, 
Shmytko & Shulakov, 1977a,b). These fringes are 
apparently produced by the change in extinction 
distance with the wavelength of diffracted X-rays. 
Aristov et al. (1977a,b) tried to measure the atomic 
scattering factors of silicon and germanium using white 
X-ray topographs from parallel-sided and wedge- 
shaped specimens. It seems rather difficult in this case 
to determine the accurate value of the wavelength 
corresponding to the position on the topographic film. 

In the present experiment an attempt is made to 
measure the Pendell6sung intensity beat of white 
radiation directly with a solid-state detector. X-ray 
intensities in hkl Laue spots from silicon single-crystal 
wafers are successively measured at different Bragg 
angles. One observes the clear Pendell6sung intensity 
beat following the variation in wavelength. The values 
of the atomic scattering factor of silicon are obtained 
with their wavelength dependence for various reflec- 
tions by measuring the extremum positions in the 
intensity beats. Measured values and their wavelength 
dependence are discussed and compared with the 
previous data from topographic methods (Hattori et al., 
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